fluidsim.solvers.ns2d.bouss.solver

NS2D Boussinesq solver (fluidsim.solvers.ns2d.bouss.solver)

class fluidsim.solvers.ns2d.bouss.solver.Simul(params)[source]

Bases: fluidsim.solvers.ns2d.solver.Simul

Pseudo-spectral solver 2D incompressible Navier-Stokes equations.

InfoSolver

alias of InfoSolverNS2DBouss

tendencies_nonlin(self, state_spect=None, old=None)[source]

Compute the nonlinear tendencies of the solver ns2d.strat.

Parameters
state_spectfluidsim.base.setofvariables.SetOfVariables

optional

Array containing the state, i.e. the vorticity, in Fourier space. If state_spect, the variables vorticity and the velocity are computed from it, otherwise, they are taken from the global state of the simulation, self.state.

These two possibilities are used during the Runge-Kutta time-stepping.

Returns
tendencies_fftfluidsim.base.setofvariables.SetOfVariables

An array containing the tendencies for the vorticity and the buoyancy.

Notes

The 2D Navier-Stokes equation can be written

\[\partial_t \hat\zeta = \hat N(\zeta) - \sigma(k) \hat \zeta,\]

and

\[\partial_t \hat b = \hat N(b) - \sigma(k) \hat b\]

This function compute the nonlinear terms (“tendencies”) \(\hat N(\zeta) = - \mathbf{u}\cdot \mathbf{\nabla} \zeta + \mathbf{\nabla}\wedge b\mathbf{e_z} = - \mathbf{u}\cdot \mathbf{\nabla} \zeta + \partial_x b\) and \(\hat N(b) = - \mathbf{u}\cdot \mathbf{\nabla} b\).

Functions

tendencies_nonlin_ns2dbouss(ux, uy, px_rot, …)

Classes

InfoSolverNS2DBouss(**kargs)

Simul(params)

Pseudo-spectral solver 2D incompressible Navier-Stokes equations.